

Zika en mujeres: Comprensión de la fisiopatología del Zika en pacientes infectados

Sara Zurita-Pineda¹, Fernanda Bertuccez-Cordeiro¹, Ricardo Correa-Fierra³, Noroska Gabriela Mogollón-Salazar³, Washington Cárdenas¹, Evencio Joel Medina-Villamizar², Edison Fabricio Gonzáles-Molina², Jefferson Pastuña-Fasso², Eduardo Merejildo¹, Gabriela Topanta¹, Mary Ernestina Regato-Arrata⁴, Mildred Zambrano⁵, Joyce Andrade⁵, Juan Chang⁵.

¹Laboratorio para Investigaciones Biomédicas, ESPOL|²Laboratorio de Productos Naturales, IKIAM| ³Biomolecules Discovery Group, IKIAM | ⁴Instituto Nacional de Investigación en Salud Pública INSPI | ⁵Servicio de Infectología e Epidemiología, Hospital de Niños Dr. Roberto Gilbert.

INTRODUCCIÓN

El virus del Zika es un arbovirus de ARN transmitido por mosquitos del género *Aedes*. La infección por el virus del Zika generalmente causa síntomas leves, como fiebre, dolor muscular y erupciones cutáneas. Sin embargo, la mayor preocupación radica en su impacto en mujeres embarazadas, ya que se ha asociado con malformaciones congénitas, especialmente la microcefalia en recién nacidos.

La aplicación de metabolómica en la sangre de mujeres infectadas contribuye para mejorar la comprensión fisiopatológica del virus del Zika en grupos vulnerables. Además, el descubrimiento de potenciales biomarcadores metabólicos endógenos contribuye para el desarrollo de herramientas diagnósticas más rapidas y eficientes para los pacientes infectados.

OBJETIVO

Analizar la respuesta fisiológica de mujeres ante el virus del Zika mediante la exploración metabolómica basada en espectrometría de masas para el descubrimiento de biomarcadors endógenos aplicados al diagnóstico clínico.

MÉTODO

El estudio incluyó mujeres entre 18 y 55 años (N=65), sin discriminación por embarazo. Las muestras fueron divididas en dos grupos: Zika (mujeres infectadas, N=43) y Controles (mujeres sanas, N=22). Todas las muestras fueron analizadas por RT-PCR para confirmar el diagnóstico.

Extracción de metabolitos

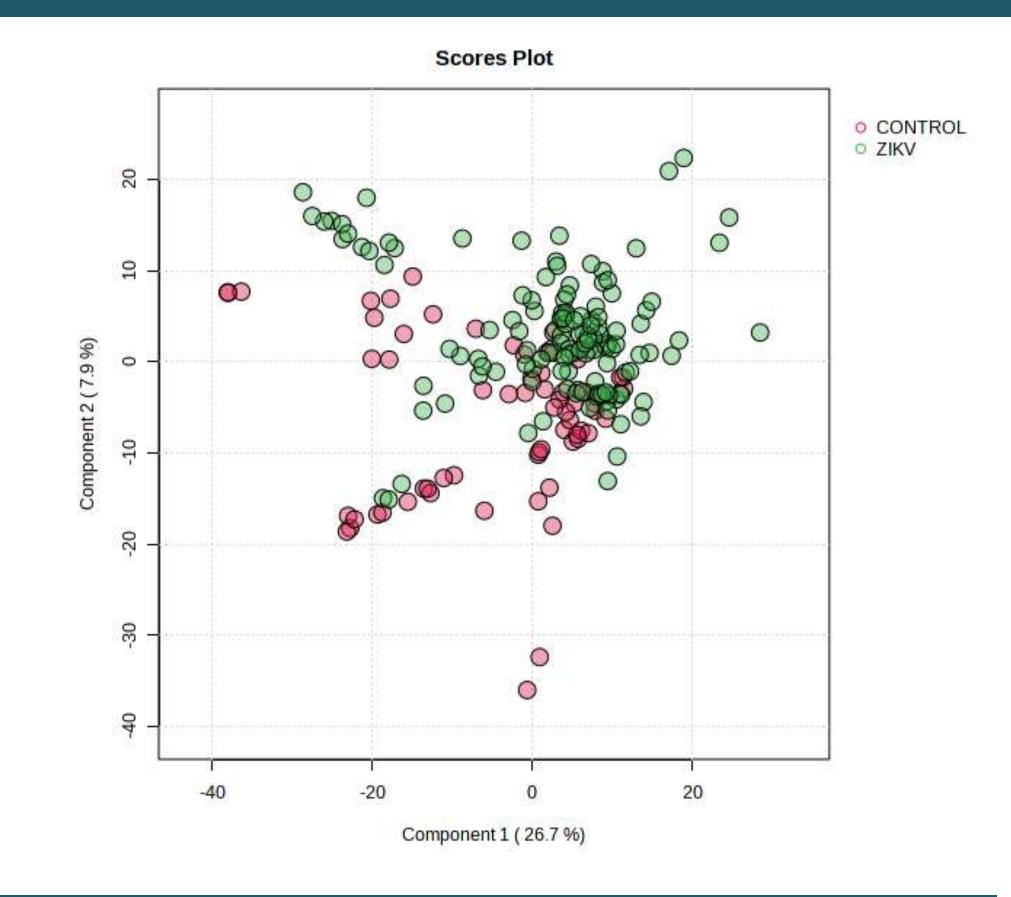
Common Name

Protocolo de Glasgow Proteomics

UPLC-MS

Cromatografía Líquida acoplada a un espectrómetro de masas

CytoScape


Red de interacción y procesos metabólicos

LipidMaps

Identificación de metabolitos diferencialmente abundantes

Estadística
Multivariada
PLS-DA
Identificación de
clústeres

RESULTADOS

Cer 34:0;O2	Ceramide
NAE 32:0;O	Ethanolamines
SM 36:2;O4	Sphingomyelin
DG O-50:14	Diglyceride
LPT O-34:3	Lipid Transfer Proteins
PE 36:2	Dioleoyl phosphatidylethanolamine
CL 76:0	Cardiolipin
CE 22:4;O	Cholesteryl ester
SPB 14:0;O3	Sphinganine
MG 30:2	Monoacylglycerol
ST 30:1;O	Sterols
CAR 32:6;O4	Acylcarnitine
CerP 36:2;O4	Ceramide 1-phosphate
LPC 28:2;O	Lysophosphatidylcholine
LPS O-30:2	Lipopolysaccharide
PC 28:1	Phosphatidylcholine
PS O-30:0	Phosphatidylserine
TG 36:6;O2	Triacylglycerol
PIP 64:2;O	Phosphatidylinositol
IPC 34:1;O2	Inositolphosphoryl-ceramide
SHexCer 34:1;O2	Hexosylceramide
Hex2Cer 28:0;O2	Dihexosylceramide
DGCC 35:6	Betaine

CONCLUSIONES

- El primer componente del PLS-DA indica que hay 15 metabolitos asociados a diferencias entre los grupos.
- Los metabolitos asociados a las diferencias corresponden a molecular hiper representadas en el control, indicando que hay una disminución de ciertos compuestos en el caso de infección por Zika.
- Los metabolitos encontrados corresponden diferentes clases de lípidos como ácidos grasos, esfingolípidos, ceramidas, glicerolípidos, esterol y glicerofosfolípidos presentes en diversos procesos metabólicos del organismo.

BIBLIOGRAFÍA

Attribution (Abbrev)

[1] Bayer A, Lennemann NJ, Ouyang Y, Cherry S, Sadovsky Y, Coyne Correspondence CB, et al. Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection. Cell Host Microbe. 2016; 19:1–8.

[2] Birungi G, Chen SM, Loy BP, Ng ML, Li SFY. Metabolomics approach for investigation of effects of dengue virus infection using the EA.hy926 cell line. J Proteome Res. 2010;9(12):6523–34.

[3] Cui L, Fang J, Ooi EE, Lee YH. Serial Metabolome Changes in a Prospective Cohort of Subjects with Influenza Viral Infection and Comparison with Dengue Fever. J Proteome Res. 2017;16(7):2614–22

